
Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 854

International Journal on Emerging Technologies 11(2): 854-862(2020)
ISSN No. (Print): 0975-8364

ISSN No. (Online): 2249-3255

Greedy Graph Coloring Algorithm Based on Depth First Search

Sumit Gupta
1
 and Dhirendra Pratap Singh

2

1
Research Scholar, Department of Computer Science and Engineering, MANIT Bhopal (Madhya Pradesh), India.

2
Assistant Professor, Department of Computer Science and Engineering, MANIT Bhopal (Madhya Pradesh), India.

(Corresponding author: Sumit Gupta)
(Received 04 January 2020, Revised 03 March 2020, Accepted 05 March 2020)

(Published by Research Trend, Website: www.researchtrend.net)

ABSTRACT: A greedy Graph Coloring Algorithm allocates non-identical colors to the adjacent vertices of a
graph such that the number of assigned colors is minimized. In Greedy Coloring of the graph, the ordering of
vertices is an essential parameter for allocating the colors to vertices of a graph. Assigning the color to the
graph must be time efficient. In this paper, we have proposed a new algorithm in which the Depth First
Search algorithm is used to give orders to the vertices of the graph. The objective of this work is to develop a
fast algorithm of graph coloring to overcome the problems in existing methods, and it should be efficient for
all kinds of graph instances. The proposed algorithm is computed on large and small benchmark graphs and
compared with four well known coloring algorithms BC-COL Algorithm, DSATUR Algorithm, A cutting plane
Algorithm and new DSATUR Algorithm. The computation result shows that the proposed algorithm has
successfully evaluated the known chromatic number for 54 different graphs and perform best with all other
compared algorithm. It also tells the minimum number of colors required to color 19 different graphs whose
chromatic numbers are not known.

Keywords: Greedy Graph Coloring, Chromatic Number, Depth First Search, Graph Algorithm.

I. INTRODUCTION

Let G (V, E) be an undirected graph having V as a set of
vertices and E as a set of edges. A coloring of the graph
G (V, E) allocates the colors to the vertices of the graph,
in such a way that if an edge (u, v) Є E, then C(u) ≠
C(v). Where C(u) and C(v) are the colors of vertex u and
vertex v, respectively. A graph is k-colorable if it has
proper k-coloring. In the proper coloring of the graph,
the number of colors used is minimized so that every
vertex gets a color that is non-identical to its adjacent
vertices colors. If a graph can be colored using k colors,
then the graph is called k-colorable.
The minimum number of colors needed for coloring a
graph is known as the chromatic number of the graph

and denoted by (G).ℵ It is the lower bound to colors

needed to color the graph. The chromatic number (G)ℵ

is least k such that Graph is k-colorable and (G)ℵ exists

as allocating non-identical colors to vertices yields a

proper k-coloring, and proper coloring of Graph is (G)ℵ

coloring. A graph G (V, E) is k-chromatic if (G)ℵ = k.

There is no general rule defining a chromatic number,
and we instead place an upper bound on the chromatic
number of a graph based on the maximum vertex
degree of the graph. For a graph G (V, E) with a

maximum vertex degree ∆, (G)ℵ ≤ f(∆) where f(∆) is

some function of the maximum vertex degree.
Determining the chromatic number of a graph is the NP-
Hard problem [10].
Graph coloring has a various practical application
related to scientific and real-life problems such as
Register allocation [6], time tabling [5], frequency
assignment [28], printed circuit testing [9], bag
rationalization [12], Crew Scheduling [8, 14], Various
puzzles games like Solving the Latin square completion
problem [15] and satellite range scheduling [31].

 In most cases, current existing algorithms of greedy
and exact approaches solve the graph instances with a
very limited number of vertices. For the larger graphs,
the existing algorithm of greedy and exact approaches
is optimal in terms of computation time but not optimal in
terms of the least colors. In a survey by Malaguti and
Toth (2010) [18] on the vertex coloring problem on
greedy, exact, heuristics and meta-heuristics
approaches are reported, and the results on
computation time and the number of colors used
dictates that specific type of existing algorithm is
suitable for the specific type of graph instances. The
concern of coloring is all admitted as complex in terms
of finding the least colors. So, this paper focuses on
finding a polynomial-time greedy algorithm for providing
solutions to graph coloring.
The various greedy algorithms proposed on different
strategies work by selecting the vertices in predefined
order or using some rule. The number of colors used in
the graph depends on the order of vertex in which it is
processed.
Greedy coloring is coloring the vertex of a graph
sequentially, and the order of sequence is decided by
some rule and chooses the smallest possible color from
the color set and assign it to vertices such that the color
of two adjacent vertices is different. If an arbitrary
sequence is given, (V1, V2, , Vn), of all the vertices of G
(V, E), a Greedy coloring algorithm assigns a color to
each vertex from V1 to Vn in turn, using the smallest
possible color value that is not already assigned to one
of its adjacent vertexes. The assignment of color is
sequential from V1 to Vn. The algorithm is an algorithm
used to properly color and ordered graph using k colors
considering the order vertex and chromatic number is
possible.

e
t

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 855

The basic greedy algorithm follows the step:

Algorithm 1: Basic Greedy Coloring Algorithm
Input: DIMACS graphs G (V, E).
Output: Colored Graph with the number of colors.

Step 1: Assign an order to the set of colors.

Step 2: Considering the first vertex in the vertex order,
assign to it the first color.

Step 3: Considering the next vertex, assign to it the

lowest-ordered color that has not already been assigned
to a vertex adjacent to it.

Step 4: Repeat step 3 until the graph is colored.
Some Proposition for Greedy Algorithm.

Proposition 1 For any graph G, there is an order that
can be assigned to the vertices of G for which the
greedy coloring algorithm will use the graph’s chromatic
number of colors to properly color G.
Proposition 2 For any connected graph, G, there is an
order in which one can place the vertices of G such that
every vertex has a higher-ordered neighbor, except for
the last vertex in the order.

The rest of the paper is organized in five sections.
Section II summarizes some previous works done
related to graph coloring algorithms. Section III explains
the proposed algorithm. Section IV discusses about the
test machine setup, test dataset used, and the final
results of the algorithms. Section V concludes the
proposed work.

II. RELATED WORK

In literature, various exact and greedy approaches are
available to solve the graph coloring problem. The first
approach is given by Brown [4], it is based on sequential
coloring and allocates colors to the graph one by one to
each vertex by using the colors that are pre-allocated to
the vertex and if the conflict persists then add the new
color to allocate. The algorithm is further improved by
Brélaz [3] in the DSATUR algorithm. This algorithm
works by dividing the problem into sub-problems, and
the sub-problem is generated when it tries to optimize
the main problem. DSATUR generates partial coloring,
which is referred to as a clique, and its size is used as
the lower bound. DSATUR determines the future color
availability based on degree and runs in Ο(n

2
). Brélaz

(1979) asks for coloring the next vertex of the highest
chromatic degree, and if it ties with vertex, then select a
degree with a maximum uncolored vertex in graph else
solves it lexicographically [3].
Sewell (1996) gave the countable improvement in
DSATUR algorithm and defined a new rule SEWELL
that if vertices are tied at maximum degree, then select
one of the vertices maximal number of common
available colors in the neighborhood of uncolored
vertices. The reported results of the SEWELL are better
than DSATUR for benchmark random graph and a small
set of graphs describing real-world problems; instead, it
runs Ο(n

3
) with more overhead than DSATUR [27].

Segundo (2012) [26] describes a new rule PASS,
computed faster than Sewell (1996) [27] as it has
reduced the overhead. Due to the restriction to a subset
of vertices, i.e., destined to reducing color domains of
vertices, which are already known to have the least
number of colors that are available.

To optimize the more, Segundo [26] uses PAAS rule
selectively to a specific set of vertices, mostly in the
later phase of the algorithm, as the number of vertices is
less compared to the initial phase. The incorporation of
this rule brings to many instances gets optimized in
terms of the chromatic number, but using any
optimization rule to the existing algorithm, it is always a
possibility of overhead to time complexity that leads to
an increase in the total computation of the algorithm. So
this rule has brought up the new upper bounds to the
chromatic number.
Méndez-Díaz and Zabala (2006) propose an
improvement based on giving solutions to symmetry
inequality constraints towards selecting a vertex for
coloring. It includes preprocessing procedures for
removing vertices; remove the vertices that, if color
allocation to the current graph, would not lead to add a
new color in the resulting graph [21]. Méndez-Díaz and
Zabala (2008) make further improvements to his own
algorithm by removing the symmetry that would come
from color in distinguish ability and defines two
additional rules [22].
Xu and Jeavons (2015) used a greedy approach and
proposed a randomized algorithm for distributed
coloring that uses local processing at vertices and
messages along the edges explained in two versions of
the algorithm. The approach is regarding the processors
exchanges message along the edge, the message is in
the form of potential color values, and each processor
has minimal graph knowledge [29].
Two versions of algorithm compute Greedy coloring,
after different expecting steps of which takes
Ο(∆

2
log

2
n), Ο(∆

2
logn), respectively. Where n is the

number of vertices, and is the maximum degree of the
graph [11, 13]. Manne and Boman (2005) described the
greedy algorithm for sparse random graph towards the
balance coloring. The number of available colors is
predicted and given by a prediction formula. The
predicted color is γ, and the prediction interval is
decided as [1, γ]. Three greedy strategies First Fit
algorithm, Least used algorithm, and Random algorithm
selects the smallest color in the predicted interval based
on the rules [19].
Lucet et al., (2006) proposed a technique of the exact
method of vertex coloring that is based on the linear
decomposition of the graph. The graph is successively
decomposed into sub-graphs at each stage of
decomposition, and boundary set vertices give the
solution of resolved graph. The linear decomposition
principle is stated [17]. The benefit gets from this
method is its complexity depends on linear width, not on
the size of the graph. The coloring algorithm works in
the current step, examining only those sub-graphs that
have no edge between two vertices of a graph
generated in the precedent step, and coloring rules are
applied. In the last step, the configuration set gives the
chromatic number.
Ouerfelli and Bouziri (2001) [25] propose the greedy
algorithm for the dynamic graph coloring exploiting the
same approach used by DSATUR [3, 26, 27]. It
describes the First Fit algorithm and the three selection
rules for ordering the sequence the vertex that is
different from the DSATUR. Zaker (2008) defines a set
in a graph for greedy algorithms. In most cases, the
greedy algorithm uses more colors.

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 856

To eliminate the extra color used by greedy algorithms,
some of the vertices are pre-colored before the
algorithm starts. The pre-colored set of vertices leads to
optimal coloring [30].
Lu et al., [16] proposed a parallel balanced coloring
algorithm, which is a practical implementation of the
equitable coloring [23]. Lu et al., try to distribute an
equal number of vertices in every color classes. It can
be obtained into two steps: First, by using greedy
coloring, they get almost balanced coloring of the graph.
In the next step, It uses a vertex-centric parallelization
scheme or a color-centric parallelization scheme for
getting balanced coloring. In the vertex-centric scheme,
the vertex of different colors is parallelly moved from an
over-full bin to the under-full bin while in color centric
vertices of the same color move parallelly.
Laurent et al. proposed two versions of the new self-
replicating algorithm called HEAD’ and HEAD [24]. It is
based on the Hybrid Evolutionary algorithm (HEA) [7],
which is proposed by Galiner and Hao. HEAD’ uses
TabuCOl and GPX algorithm for escaping from local
minima. It is a simple algorithm which contains two
TabuCol algorithm which interacts each other. The
major drawback of HEAD’ algorithm is premature
convergence means without getting the legal coloring, it
stops. For dealing with this premature convergence,
Laurent et al. give HEAD in which they add two other
candidate solution for maintaining the population
diversity. The key idea is to replace one of the solutions
with the solution previously obtain.
Artacho et al., (2018) gives an efficient graph coloring
algorithm which obtained the graph coloring with the
help of the Douglas–Rachford algorithm. Here graph
coloring is done by considering a different formulation,
based on semi-definite programming. This new
approach is demonstrated with the help of numerous
numerical experiments [1].

III. PROPOSED WORK

In the proposed approach, the greedy coloring of
vertices that colors the vertices of a graph sequentially
and using the color that is pre-allocated to vertices or
adds up a new color to allocate is described. The
sequencing of vertices is an important parameter in
terms of minimizing the number of colors. The results in
greedy approaches are obtained in polynomial time if
compared with heuristics and Meta-heuristics
approaches. The proposed method uses the Depth-first
Search for sequencing the vertices of a graph that takes
the input sequence of the graph and returns the vertices
of a graph in the sequence of its traversal to the graph
by assigning a non-zero increasing positive integer
called as an index to every vertex. The coloring starts
according to the sequence given by the Depth-first
traversal and continues until all the vertices get
processed and return the number of colors.
The proposed Graph coloring algorithm is based on the
Depth First Search. DFS is used to provide the order to
the vertices of the graph in which they will be color. It
will maintain the connectivity between the vertices which
get colored one after another. The algorithm is
exploiting the properties of a greedy approach is
proposed. The primary objective of using the greedy
approach is that the number of colors used in the
coloring is to be minimized and secondarily the speed of

the algorithm. Greedy algorithms for coloring compute
the result in polynomial time. All steps of the algorithm
are explained in the next section.

A. Proposed Algorithm
In the proposed algorithm coloring of vertices of the
graph is done using a greedy algorithm, and for ordering
the vertices, we employed DFS traversal. During the
coloring, the connectivity of the graph is preserved. The
algorithm works in the following steps.

Algorithm 2: Proposed Coloring Algorithm
Input: DIMACS graphs G(V, E).
Output: Colored Graph with number of color χ.

Step 1: Repeat the step 2-5 for all vertexes of graph one by
one.

Step 2: The DFS is applied to the graph and assigned a
unique number to each vertex in increasing order starting
from 1.

Step 3: The DFS start from vertex selected in step 1 and
continue until all the vertices in the graph are visited and
returns a DFS sequence or index. The color set is initialized
to zero. Two lists are maintained for each vertex.
(i) Adjacent vertexes having an index less than the current
vertex index.
(ii) Adjacent vertexes having an index greater than the
current vertex index.

Step 4: This phase starts coloring of the graph, it starts with
vertex having index 1, following the DFS sequence and
continues to color all the vertexes until the graph gets
colored. During any iteration of the algorithm, the following
rules are followed
(i) Vertex, which is having a greater index than its adjacent
vertex, can only get modified its color.
(ii) Always assign a minimum possible color from the current
color set. If color conflicts to all adjacent vertexes, then add a
new color to the color set.
(iii) The color assignment is done in increasing order of their
vertex index.

Step 5: If at any iteration while color allocation, the algorithm
is at the current vertex, then the color assignment is done in
the following way.
(i) Color Assignment to Current Vertex:.
a. First checks the color with all the vertexes having vertex
number less than the current vertex.
b. If, when any vertexes color is matched with the color of
vertex having less vertex number than current vertex, then
assign a minimum color from the current color set. A color
that differs from its all adjacent vertexes color.
 c. If all the color of the color set are already assigned to
adjacent vertex, then assign a new color to current vertex and
add this to color set.
(ii) Color Assignment to Adjacent Vertexes:
a. First, it checks, the color of all vertexes one by one having
vertex number greater than the current vertex number.
b. If a vertex is not assigned any color till now, then assign a
minimum color from the color set, which is different from the
current vertex color.
c. When the current vertex color is matched with a vertexes
color having a larger vertex number than the current vertex,
then change this adjacent vertex having a larger vertex
number.
d. Assign a minimum color from the current color set, which
differs from the current vertex color

Step 6: The number of colors in the color set gives the
chromatic number of the graph.

B. Complexity of Algorithm
The time complexity of an algorithm exhibits its
performance. In our proposed algorithm, the time

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 857

complexity is the sum of the Depth First Search
sequencing and the Coloring algorithm. Let n be the
number vertexes in the Graph, d be the maximum
degree of the graph k be the chromatic number of
Graph.
Ordering or labeling the vertices of the graph = Ο(n).
Coloring the vertices of graph = Ο(kdn).
So, the total Complexity = Ο(n) + Ο(kdn) ᴝ Ο(kdn).
The time required for the algorithm to color vertices of
graph = Ο(kdn).

These operations are repeated n times, so the final
complexity of the algorithm is Ο(kdn

2
).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed algorithm is implemented on a machine
having Intel (R) i7-8700 3.20 GHz processor, 8 GB
RAM, and windows10 operating system. The C
programming language is used to code the proposed
algorithm. The key data structure used for storing and
manipulation is ‘Structure’. The results are computed on
benchmark instances of the DIMACS graph dataset [2].

Table 1: Graph instances with matched LB to chromatic number.

Instances n m ℵ

BC-COL

Algorithm [23]

DSATUR

Algorithm [14]

A cutting

plane

Algorithm

[15]

new

DSATUR

Algorithm

[13]

Proposed

Algorithm

LB UB Time LB UB Time LB Time LB Time LB Time

Myceil3 11 20 4 4 0.47

Myceil4 20 71 5 5 0.48

Myceil5 47 236 6 6 0.88

Myceil6
95

755 7 5 7 7200 2 7 7200 7 tout 7 0.86

Myceil7 191 2360 8 5 8 7200 2 8 7200 8 tout 7 1.45

Fpsol2_i_1 496 11654 65 65 65 0.6 65 65 0.1 65 8 68 65 12.04

Fpsol2_i_2 451 8691 30 30 30 1.2 30 30 0.1 30 1 30 30 10.86

Fpsol2_i_3 425 8688 30 30 30 1.2 30 30 0.1 30 1 30 30 11.89

inithx.i.1 864 18707 54 54 54 Init 54 54 Init 54 0.0 54 39.63

inithx.i.2 645 13979 31 31 31 Init 31 31 Init 31 0.0 31 16.61

inithx.i.3 621 13979 31 31 31 Init 31 31 Init 31 0.0 31 18.53

mulsol.i.1 197 3925 49 49 49 Init 49 49 Init 49 0.0 49 2.69

zeroin.i.1 211 4100 49 49 49 Init 49 49 Init 49 0.0 49 3.2

zeroin.i.2 211 3541 30 30 30 Init 30 30 Init 30 0.0 30 1.4

zeroin.i.3 206 3540 30 30 30 Init 30 30 Init 30 0.0 30 1.3

Anna 138 493 11 11 11 Init 11 11 Init 11 0.0 11 0.34

David 87 406 11 11 11 Init 11 11 Init 11 0.0 11 0.26

Homer 561 1629 13 13 13 Init 13 13 Init 13 1.97

Huck 74 301 11 11 11 Init 11 11 Init 11 0.0 11 1.03

Jean 80 254 10 10 10 Init 10 10 Init 10 0.0 10 1.02

1-insertions_4 67 232 5 5 5 2 5 0.22

3-insertions_3 56 110 4 4 4 1 4 4 5 3 0 4 0.3 4 0.21

4-insertions_3 79 156 4 3 4 7200 2 4 7200 3 0 4 96.9 4 0.49

1-FullIns_4 93 593 5 5 5 0.1 4 0 5 0.0 5 0.41

1-FullIns_5 282 3247 6 4 6 7200 3 6 7200 4 0 6 tout 6 1.31

2-FullIns_3 52 201 5 5 5 0.1 5 5 1014 5 0 5 tout 5 0.53

2-FullIns_4 212 1621 6 5 6 7200 4 6 7200 6 4 6 tout 6 0.77

2-FullIns_5 852 12201 7 5 7 7200 4 7 7200 7 tout 7 9.38

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 858

Continued …….

3-FullIns_3 80 346 6 6 6 0.1 6 0 6 tout 6 0.68

3-FullIns_4 405 3524 7 6 7 7200 5 7 7200 6 4 7 tout 7 2.20

3-FullIns_5 2030 33751 8 6 8 7200 5 8 7200 6 292 8 tout 8 86.02

4-FullIns_3 114 541 7 7 7 3 7 0 7 tout 7 0.45

4-FullIns_4 690 6650 8 7 8 7200 6 8 7200 7 16 8 tout 8 5.56

5-FullIns_3 154 792 8 8 8 20 8 tout 8 0.51

5-FullIns_4 1085 11395 ? 8 9 7200 7 9 7200 8 55 9 tout 9 10.73

mulsol.i.2 188 3885 31 31 31 Init 31 31 Init 31 0.0 31 1.83

mulsol.i.3 184 3916 31 31 31 31 31 31 0.0 31 1.79

mulsol.i.4 185 3946 31 31 31 31 31 31 0.0 31 1.90

mulsol.i.5 185 3973 31 31 31 31 31 31 0.0 31 1.79

School1 385 19095 14 14 14 14 14 14 0.1 14 20.2

School1_nsh 352 14612 14 14 14 14 14 14 0.4 14 12

games120 120 638 9 9 9 9 9 9 1.13

miles250 128 387 8 8 8 Init 8 8 Init 8 0.0 8 1.20

miles500 128 1170 20 20 20 Init 20 20 Init 20 0.0 20 1.83

Miles750 128 2113 31 31 31 Init 31 31 Init 31 0.0 31 2.76

Miles1000 128 3216 42 42 42 0.02 42 42 0.1 42 0 42 0.0 42 2.89

Miles1500 128 5198 73 73 73 0.1 73 73 0.1 73 0 79 0.0 73 3.42

Fpsol2_i_1 496 11654 65 65 65 0.6 65 65 0.1 65 8 65 65 12.04

Fpsol2_i_2 451 8691 30 30 30 1.2 30 30 0.1 30 1 30 30 10.86

Fpsol2_i_3 425 8688 30 30 30 1.1 30 30 0.1 30 1 30 30 11.89

Mug88_1 88 146 4 4 4 11 4 324 4 0.21

Mug88_25 88 146 4 4 4 184 4 4 4756 4 191 4 0.37

Mug100_1 100 166 4 4 4 60 4 tout 4 0.28

Mug100_25 100 166 4 4 4 60 4 tout 4 0.27

The implementation of our algorithm, above mentioned,
as specification keeping in mind and the standard
specification that was required for successful execution
is taken and tried for the avoidance of all possible
hindrance and errors. The ideal platform and requisite
language are taken into consideration. In this, we are
experimentally demonstrating the result of our algorithm,
and results are summarized in the table. The results
shown here are executed 25 times on a machine
mentioned above. The time shown in the table for
execution is average computations. All the computations
performed on the standard benchmark instances of the
DIMACS graph [2]. We have assumed the computation
time of other algorithms on standard parameters as all
the algorithms are executed on different hardware.
In our experiment, we test the proposed algorithm and
compared benchmark algorithm on the widely used
graph coloring library from DIMACS benchmark
instances. Various classes of the graphs are present in
this library like as random or quasi-random graphs,
problems based on register allocation for variables in
real codes, or class scheduling graphs, among others.
Most of the graph coloring problem uses this DIMACS
graph instances. In the table the first column represents
the instances, the second column represented as ‘n’
shows the number of vertices in the graph instances,
the third column represented by ‘m’ shows the number
of edges in the graph, the fourth column represented by

' 'ℵ shows the known chromatic number of the graph.

The upper bound and lower bound of chromatic number
is represented by UB, LB, respectively. The last column
gives the result of the proposed algorithm. The time in
the table is considered in seconds. The ‘init’ represents
the initial time of the respective algorithm. The
remaining columns are the result of an existing
algorithm with their referenced mark. The results
summarized in Table 1 show the graph instance for
which the LB result of the proposed algorithm in
matched with a chromatic number of the respective
graph and results of the rest of instances are shown in
Table 2.
Table 1 is a summarization of the best results that we
have found in our proposed algorithm. The results are
also compared to existing algorithm [20, 21, 22, 26].
For 54 graphs proposed algorithm has found the
chromatic numbers similar to current known or proved
lower bounds. The graph from Mycielski Transformation
family myceil3, myceil4, myceil5, and myceil6, myceil7
found their chromatic number in time less than 1
second.
Chromatic number of graphs 4-insertions_3, 1-
FullIns_5, 2-FullIns_3, 2-FullIns_4, 2-FullIns_5, 3-
FullIns_4, 3-FullIns_5 and 4-FullIns_4 are evaluated
very fast in comparison of other algorithms and for
graph 5-FullIns_4 chromatic number similar to given by
other algorithms is evaluated in 10 seconds.

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 859

Table 2: Experimental Results on Graph Instances.

Instances n m ℵ

BC-COL

Algorithm [23]

DSATUR

Algorithm [14]

A cutting

plane

Algorithm

[15]

new

DSATUR

Algorithm

[13]

Proposed

Algorithm

LB UB Time LB UB Time LB Time LB Time LB Time

DSJC125.1 125 736 5 5 5 0.9 5 5 0.1 5 1 5 0 7 0.80

DSJC125.5 125 3891 ? 13 20 7200 9 19 7200 12 7 19 tout 23 1.46

DSJC125.9 125 6961 ? 42 47 7200 29 45 7200 42 354 46 tout 54 1.89

DSJC250.1 250 3218 ? 5 9 7200 4 9 7200 5 11 9 tout 12 1.84

DSJC250.5 250 15668 ? 13 36 7200 9 35 7200 14 3339 34 tout 40 6.80

DSJC250.9 250 27897 ? 48 88 7200 34 87 7200 48 3605 82 tout 95 22.01

DSJC500.1 500 12458 ? 5 15 7200 5 15 7200 14 tout 18 6.70

DSJC500.5 500 62624 ? 13 63 7200 9 63 7200 13 538 62 tout 68 99

DSJC500.9 500 224874 ? 59 161 7200 43 160 7200 59 5870 169 366.3

DSJC1000.1 1000 49629 ? 6 26 7200 5 25 7200 25 tout 30 164

DSJC1000.5 1000 249826 ? 15 116 7200 10 114 7200 110 tout

DSJC1000.9 1000 449449 ? 65 301 7200 53 300 7200 66 4546 300 tout

DSJR500.1 500 3555 12 12 12 Init 12 12 Init 12 0 13 2.82

DSJR500.1c 500 121275 ? 78 88 7200 70 88 7200 80 4470 85 tout 107 367.6

DSJR500.5 500 58862 122 119 130 Init 103 130 Init 119 1211 130 tout 140 94.58

Latin_sq_10 9000 307350 ? 90 129 7200 90 129 7200

le_450_5a 450 5714 5 5 9 7200 5 9 7200 12 3.84

le_450_5b 450 5734 5 5 9 7200 5 9 7200 12 5.21

le_450_5c 450 9803 5 5 5 7200 5 5 Init 5 0 14 5.06

le_450_5d 450 9757 5 55 10 Init 5 8 7200 5 98.1 14 5.41

le_450_15a 450 8168 15 15 17 7200 15 17 7200 16 tout 20 6.13

le_450_15b 450 8169 15 15 17 7200 15 16 7200 16 tout 20 8.72

le_450_15c 450 16680 15 15 24 7200 13 23 7200 22 tout 29 10.86

le_450_15d 450 16750 15 15 23 7200 13 23 7200 23 tout 29 15.17

le_450_25a 450 8260 25 25 25 Init 25 25 Init 25 0 27 6.81

le_450_25b 450 8263 25 25 25 Init 25 25 Init 25 0 26 7.83

le_450_25c 450 17343 25 25 28 7200 20 28 7200 34 12.69

le_450_25d 450 17425 25 25 28 7200 21 27 7200 33 10.98

queen5_5 25 160 5 5 1.62

queen6_6 36 290 7 8 1.72

queen7_7 39 476 7 10 0.98

queen8_8 64 728 9 9 9 3 9 9 18 9 3.0 11 1.14

queen8_12 96 1368 12 12 12 Init 12 12 Init 12 0.0 14 0.88

queen9_9 81 1056 10 9 11 7200 9 10 7200 10 466 12 1.40

queen10_10 100 2940 11 10 12 7200 10 12 7200 12 tout 14 1.50

queen11_11 121 3960 11 11 14 7200 11 13 7200 13 tout 15 1.40

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 860

Continued…….

queen12_12 144 5192 12 12 15 7200 12 14 7200 14 tout 17 2.00

queen13_13 169 6656 13 13 16 7200 13 15 7200 15 tout 18 2.34

Queen14_14 196 8372

14 14 17 7200 14 17 7200 16 tout 20 1.89

Queen15_15 225 10360 15 15 18 7200 15 18 7200 18 tout 21 2.12

Queen16_16 256 12640 16 16 20 7200 13 19 7200 19 tout 22 2.14

1-insertions_5 202 1227 ? 4 6 7200 2 6 7200 3 0 6 tout 6 0.48

1-insertions_6 607 6337 ? 4 7 7200 2 7 7200 3 3 7 tout 7 2.56

2-insertions_4 149 541 ? 4 5 7200 2 5 7200 3 0 5 tout 5 0.55

2-insertions_5 597 3936 ? 3 6 7200 2 6 7200 3 3 6 tout 6 3.07

3-insertions_4 281 1046 ? 3 5 7200 2 5 7200 3 0 5 tout 5 0.80

3-insertions_5 1406 9695 ? 3 6 7200 2 6 7200 3 61 6 9.80

4-insertions_4 475 1795 ? 3 5 7200 2 5 7200 3 2 5 tout 5 1.4

wap01 2368 110871 ? 41 46 7200 39 48 7200 47 tout

wap02 2464 111742 ? 40 45 7200 39 46 7200 46 tout

wap03 4730 286722 ? 40 56 7200 40 55 7200

wap04 5231 294902 ? 40 50 7200 20 48 7200

wap05 905 43081 ? 50 51 7200 27 51 7200 50 50 50 297.1

wap06 947 43571 ? 40 44 7200 33 45 7200 48 48 48 129.87

wap07 1809 103368 ? 40 46 7200 23 46 7200 45 45

wap08 1870 104176 ? 40 47 7200 23 45 7200 45 45

qg_order30 900 26100 30 30 30 Init 30 30 Init 30 0.0

qg_order40 1600 62400 40 40 42 7200 40 42 720 40 0.2

qg_order60 3600 212400 60 60 63 7200 60 63 7200 61 tout

ash331GPIA 662 4185 4 4 4 51 4 4 0.7 4 46 4 0.0 6 3.64

ash608GPIA 1216 7844 4 4 4 692 4 4 3 4 692 4 0.1 6 8.73

Ash958GPIA 1916 12506 ? 4 5 7200 3 5 7200 4 4236 4 0.4 7 34

abb313GPIA 1557 46546 ? 8 10 7200 6 10 7200 10 tout

will199GPIA 701 6772 7 7 7 1.2 7 tout 8 8.62

All fpsol graphs have found the known chromatic
number and the chromatic number of fpsol_i_1,
fpsol_i_2, fpsol_i_3 are 65, 30, 30 respectively. All fpsol
instances are taking a time approximately 12 seconds.
Mugg graphs are solved with equal to the chromatic
number in the minimum of time compared to other
algorithms. It is solved within 1 second for all
executions. The ash graph, abb graph, and will graphs
are solved with equal to chromatic number with a
maximum of computation time 32 seconds. School
graphs have found the known chromatic number.
Results of the register graphs show that chromatic
numbers with equal to their known chromatic number.
Results for the family of mulsol graph also equal to a
chromatic number.Every graph is solved within 3
seconds. All zeroin graphs are solved within 4 seconds.
Results of Anna, david homer, huck, and jean are equal
to a chromatic number. Games graph is equal to the
chromatic number, and all miles graph are evaluated to
their known chromatic number in less than 4 seconds.
Table 2 shows the computation results on remaining
benchmark instances of large and small graphs and it
contains the lower bound to the chromatic number given
by our algorithm, the time taken to compute the results
and the comparison with the existing algorithm

[17-19, 23]. In this, we have compared our resulted
lower bounds to the chromatic number and the
computation time overall the family of graphs.
So starting with the random graph we have tested 15
random graph with most of them are unknown chromatic
numbers and the result is compared to other existing
algorithms [20-22, 26] and it shows that for all the
random graph the result is very bad in terms of
chromatic number and it clear that except for
DSJC125.1 in which result is very close to lower bound
of chromatic number and it is equal to 5. Out of 15
random graphs 13 are solved in efficient time with the
highest time of 366.3. The Latin graph is unsolved in our
case.
When we are comparing the results of a family of
le_450_x graph with existing algorithms, the results are
more than the upper bound that is given in the Table 2.
The upper bound for le450_5a counted is 12 in 3.84
seconds. The last graph of this type of le450_25d is
gained a chromatic number of 33. Every 15 instances
are solved with a minimum time of 3.84 seconds and a
maximum time of 15.17.
For the queen graph, we have obtained the chromatic
number more than the upper bound and with every
instance is solved within 3 seconds. Only Queen5_5 is

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 861

equal to its chromatic number; remaining instances are
higher than the upper bound. Every Queen graph is
solved.
For a family of fullIns graph, results are equal to the
chromatic number. Every FullIns graph is solved; the
computation time is efficient than other algorithms. 4-
fullIns-5 has remained unsolved. The time taken to
compute results for these graphs is less than 10
seconds except for 3-fullIns-5, which takes 86 seconds.
So it has an advantage that with the equal chromatic
numbers, these instances have given the best results in
terms of time.
For the results on the family of the wap graph, only two
instances are solved others remained unsolved, and it is
exited from the execution giving a large integer value. In
this type of graph, the density ratio of edges with
respect to the vertex is very high. All the qg_ order
graph instances are unsolved to our algorithm. The
wap05 graph is solved with equal to chromatic number
with very efficient time compared to other algorithms
and is equal to 297 seconds.

IV. CONCLUSION

This paper has presented an effective method of graph
coloring, that is based on the greedy approach, and the
Depth First Search decides the sequencing. In order to
decrease the computation time, a greedy algorithm is
employed. Coloring of the vertices in their Depth-First
search ordering keeps the connectivity between
vertices, which are colored in sequence. The proposed
algorithm computes nearly all instances in very less
time. Challenging graph instances are tested on the
proposed algorithm, and the result shows that for most
of the graph known chromatic number are matched. The
comparison with the existing algorithm is conducted,
and it shows that the objective is justified. The proposed
algorithm has matched with the currently known
chromatic number for 54 graph instances and minimized
the time of other graph instances as compared to other
algorithms.

V. FUTURE SCOPE

Greedy graph coloring can be applied to various real-life
applications where the sequential algorithm is converted
into the parallel. By the use of coloring nodes of the
same color can directly apply parallelly. There are some
graphs where our algorithm cannot give the results like
Wap and q_g_order or on some graph; it did not provide
the optimal results also algorithm can be applied to
some vast dataset. In the future, we will try to apply this
algorithm to find the community of the densely
connected nodes to retrieve the useful information.

ACKNOWLEDGMENTS

We are very thankful to all the faculty members,
research scholars, and supporting staff of Maulana
Azad National Institute of Technology, Bhopal, India, for
the continued encourages and support to complete this
work.

Conflict of Interest. The authors declare that there is
no conflict of interest of any sort on this research.

REFERENCES

[1]. Artacho, F. J. A., Campoy, R., & and Elser, V.
(2018). An enhanced formulation for solving graph
coloring problems with the Douglas–Rachford algorithm.
Journal of Global Optimization, 1-21.
[2]. Bader, D. A., Henning, M., & Sanders P. (2004).
DIMACS graph dataset.
https://mat.tepper.cmu.edu/COLOR/instances.html.
[3]. Brélaz, D. (1979). New methods to color the vertices
of a graph. Communications of the ACM, 22(4), 251–
256.
[4]. Brown, J. R. (1972). Chromatic scheduling and the
chromatic number problem. Management Science,
19(4-part-1), 456–463.
[5]. Burke, E. K., Meisels, A.,Petrovic, S., & Qu, R.
(2004). A graph-based hyper heuristic for timetabling
problems. Computer Science Technical Report No.
NOTTCS-TR-2004-9, University of Nottingham.
[6]. de Werra, D., Eisenbeis, C.,Lelait, S., & Marmol, B.
(1999). On a graph-theoretical model for cyclic register
allocation. Discrete Applied Mathematics, 93(2-3), 191–
203.
[7]. Galinier, P. & Hao, J. K. (1999). Hybrid evolutionary
algorithms for graph coloring. Journal of combinatorial
optimization, 3(4), 379–397.
[8]. Gamache, M., Hertz, A., & Ouellet J. O. (2007). A
graph coloring model for a feasibility problem in monthly
crew scheduling with preferential bidding. Computers &
operations research, 34(8), 2384–2395.
[9]. Garey, M., Johnson, D., & So, H. (1976). An
application of graph coloring to printed circuit testing.
IEEE Transactions on circuits and systems, 23(10),
591–599.
[10]. Garey, M. R. & Johnson, D. S. (1979). Computers
and intractability. Freeman San Francisco, Vol. 174.
[11]. Gavoille, C., Klasing, R., Kosowski, A., Kuszner, L.,
& Navarra, A. (2009). On the complexity of distributed
graph coloring with local minimality constraints.
Networks. An International Journal, 54(1), 12–19.
[12]. Glass, C. (2002). Bag rationalization for a food
manufacturer. Journal of the Operational Research
Society, 53(5), 544–551.
[13]. Grundy, P. M. (1939). Mathematics and games.
Eureka, 2, 6–9.
[14]. Izadkhah, H. (2019). Learning based genetic
algorithm for task graph scheduling. Applied
Computational Intelligence and Soft Computing, 1-16.
[15]. Jin, Y., & Hao, J. K. (2019). Solving the Latin
square completion problem by memetic graph coloring.
IEEE Transactions on Evolutionary Computation, 23(6),
1015-1028.
[16]. Lu, H., Halappanavar, M., Chavarria-Miranda, D.,
Gebremedhin, A. H., Panyala, A., & Kalyanaraman, A.
(2016). Algorithms for balanced graph colorings with
applications in parallel computing. IEEE Transactions on
Parallel and Distributed Systems, 28(5), 1240–1256.
[17]. Lucet, C., Mendes, F., & Moukrim, A. (2006). An
exact method for graph coloring. Computers &
operations research, 33(8), 2189–2207.
[18]. Malaguti, E., & Toth, P. (2010). A survey on vertex
coloring problems. International transactions in
operational research, 17(1), 1–34.

Gupta & Singh International Journal on Emerging Technologies 11(2): 854-862(2020) 862

[19]. Manne, F., & Boman, E. (2005). Balanced greedy
colorings of sparse random graphs. The Norwegian
Informatics Conference, NIK, 113–124.
[20]. Mehrotra, A., & Trick, M. A. (1996). A column
generation approach for graph coloring. Informs Journal
on Computing, 8(4), 344–354.
[21]. Méndez-Díaz, I., & Zabala, P. (2006). A branch-
and-cut algorithm for graph coloring. Discrete Applied
Mathematics, 826–847.
[22]. Méndez-Díaz, I., & Zabala, P. (2008). A cutting
plane algorithm for graph coloring. Discrete Applied
Mathematics, 159–179.
[23]. Meyer, W. (1973). Equitable coloring. The
American Mathematical Monthly, 80(8), 920–922.
[24]. Moalic, L., & Gondran, A. (2018). Variations on
memetic algorithms for graph coloring problems. Journal
of Heuristics, 24(1), 1–24.
[25]. Ouerfelli, L., & Bouziri, H. (2011). Greedy
algorithms for dynamic graph coloring. 2011
International Conference on Communications,
Computing and Control Applications (CCCA), IEEE, 1–
5.

[26]. San Segundo, P. (2012). A new Dastur-based
algorithm for exact vertex coloring. Computers &
Operations Research, 39(7), 1724–1733.
[27]. Sewell, E. (1996). An improved algorithm for exact
graph coloring. DIMACS series in discrete mathematics
and theoretical computer science, 26, 359–373.
[28]. Smith, D. H., Hurley, S., & Thiel, S. (1998).
Improving heuristics for the frequency assignment
problem. European Journal of Operational Research,
107(1), 76–86.
[29]. Xu, L., & Jeavons, P. (2015). Patterns from nature:
Distributed greedy coloring with simple messages and
minimal graph knowledge. Information Sciences, 550–
566.
[30]. Zaker, M. (2008). Greedy defining sets in latin
squares. Ars Combin, 89, 205–222.
[31]. Zufferey, N., Amstutz, P., & Giaccari, P. (2008).
Graph coloring approaches for a satellite range
scheduling problem. Journal of Scheduling, 11(4), 263–
277.

How to cite this article: Gupta, S. and Singh, D. P. (2020). Greedy Graph Coloring Algorithm based on Depth First
Search. International Journal on Emerging Technologies, 11(2): 854–862.

