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ABSTRACT: A greedy Graph Coloring Algorithm allocates non-identical colors to the adjacent vertices of a 
graph such that the number of assigned colors is minimized. In Greedy Coloring of the graph, the ordering of 
vertices is an essential parameter for allocating the colors to vertices of a graph. Assigning the color to the 
graph must be time efficient. In this paper, we have proposed a new algorithm in which the Depth First 
Search algorithm is used to give orders to the vertices of the graph. The objective of this work is to develop a 
fast algorithm of graph coloring to overcome the problems in existing methods, and it should be efficient for 
all kinds of graph instances. The proposed algorithm is computed on large and small benchmark graphs and 
compared with four well known coloring algorithms BC-COL Algorithm, DSATUR Algorithm, A cutting plane 
Algorithm and new DSATUR Algorithm. The computation result shows that the proposed algorithm has 
successfully evaluated the known chromatic number for 54 different graphs and perform best with all other 
compared algorithm. It also tells the minimum number of colors required to color 19 different graphs whose 
chromatic numbers are not known. 
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I. INTRODUCTION 

Let G (V, E) be an undirected graph having V as a set of 
vertices and E as a set of edges. A coloring of the graph 
G (V, E) allocates the colors to the vertices of the graph, 
in such a way that if an edge (u, v) Є E, then C(u) ≠ 
C(v). Where C(u) and C(v) are the colors of vertex u and 
vertex v, respectively. A graph is k-colorable if it has 
proper k-coloring. In the proper coloring of the graph, 
the number of colors used is minimized so that every 
vertex gets a color that is non-identical to its adjacent 
vertices colors. If a graph can be colored using k colors, 
then the graph is called k-colorable. 
The minimum number of colors needed for coloring a 
graph is known as the chromatic number of the graph 

and denoted by (G).ℵ  It is the lower bound to colors 

needed to color the graph. The chromatic number (G)ℵ

is least k such that Graph is k-colorable and (G)ℵ exists 

as allocating non-identical colors to vertices yields a 

proper k-coloring, and proper coloring of Graph is (G)ℵ

coloring. A graph G (V, E) is k-chromatic if (G)ℵ = k. 

There is no general rule defining a chromatic number, 
and we instead place an upper bound on the chromatic 
number of a graph based on the maximum vertex 
degree of the graph. For a graph G (V, E) with a 

maximum vertex degree ∆, (G)ℵ ≤ f(∆) where f(∆) is 

some function of the maximum vertex degree. 
Determining the chromatic number of a graph is the NP-
Hard problem [10]. 
Graph coloring has a various practical application 
related to scientific and real-life problems such as 
Register allocation [6], time tabling [5], frequency 
assignment [28], printed circuit testing [9], bag 
rationalization [12], Crew Scheduling [8, 14], Various 
puzzles games like Solving the Latin square completion 
problem [15] and satellite range scheduling [31]. 

 In most cases, current existing algorithms of greedy 
and exact approaches solve the graph instances with a 
very limited number of vertices. For the larger graphs, 
the existing algorithm of greedy and exact approaches 
is optimal in terms of computation time but not optimal in 
terms of the least colors. In a survey by Malaguti and 
Toth (2010) [18] on the vertex coloring problem on 
greedy, exact, heuristics and meta-heuristics 
approaches are reported, and the results on 
computation time and the number of colors used 
dictates that specific type of existing algorithm is 
suitable for the specific type of graph instances. The 
concern of coloring is all admitted as complex in terms 
of finding the least colors. So, this paper focuses on 
finding a polynomial-time greedy algorithm for providing 
solutions to graph coloring. 
The various greedy algorithms proposed on different 
strategies work by selecting the vertices in predefined 
order or using some rule. The number of colors used in 
the graph depends on the order of vertex in which it is 
processed. 
Greedy coloring is coloring the vertex of a graph 
sequentially, and the order of sequence is decided by 
some rule and chooses the smallest possible color from 
the color set and assign it to vertices such that the color 
of two adjacent vertices is different. If an arbitrary 
sequence is given, (V1, V2, , Vn), of all the vertices of G 
(V, E), a Greedy coloring algorithm assigns a color to 
each vertex from V1 to Vn in turn, using the smallest 
possible color value that is not already assigned to one 
of its adjacent vertexes. The assignment of color is 
sequential from V1 to Vn. The algorithm is an algorithm 
used to properly color and ordered graph using k colors 
considering the order vertex and chromatic number is 
possible.  

e
t
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The basic greedy algorithm follows the step: 

Algorithm 1: Basic Greedy Coloring Algorithm 
Input: DIMACS graphs G (V, E). 
Output: Colored Graph with the number of colors. 

Step 1: Assign an order to the set of colors. 

Step 2: Considering the first vertex in the vertex order, 
assign to it the first color. 

Step 3: Considering the next vertex, assign to it the 

lowest-ordered color that has not already been assigned 
to a vertex adjacent to it. 

Step 4: Repeat step 3 until the graph is colored. 
Some Proposition for Greedy Algorithm. 

Proposition 1 For any graph G, there is an order that 
can be assigned to the vertices of G for which the 
greedy coloring algorithm will use the graph’s chromatic 
number of colors to properly color G. 
Proposition 2 For any connected graph, G, there is an 
order in which one can place the vertices of G such that 
every vertex has a higher-ordered neighbor, except for 
the last vertex in the order. 

The rest of the paper is organized in five sections. 
Section II summarizes some previous works done 
related to graph coloring algorithms. Section III explains 
the proposed algorithm. Section IV discusses about the 
test machine setup, test dataset used, and the final 
results of the algorithms. Section V concludes the 
proposed work. 

II. RELATED WORK 

In literature, various exact and greedy approaches are 
available to solve the graph coloring problem. The first 
approach is given by Brown [4], it is based on sequential 
coloring and allocates colors to the graph one by one to 
each vertex by using the colors that are pre-allocated to 
the vertex and if the conflict persists then add the new 
color to allocate. The algorithm is further improved by 
Brélaz [3] in the DSATUR algorithm. This algorithm 
works by dividing the problem into sub-problems, and 
the sub-problem is generated when it tries to optimize 
the main problem. DSATUR generates partial coloring, 
which is referred to as a clique, and its size is used as 
the lower bound. DSATUR determines the future color 
availability based on degree and runs in Ο(n

2
). Brélaz 

(1979) asks for coloring the next vertex of the highest 
chromatic degree, and if it ties with vertex, then select a 
degree with a maximum uncolored vertex in graph else 
solves it lexicographically [3]. 
Sewell (1996) gave the countable improvement in 
DSATUR algorithm and defined a new rule SEWELL 
that if vertices are tied at maximum degree, then select 
one of the vertices maximal number of common 
available colors in the neighborhood of uncolored 
vertices. The reported results of the SEWELL are better 
than DSATUR for benchmark random graph and a small 
set of graphs describing real-world problems; instead, it 
runs Ο(n

3
) with more overhead than DSATUR [27]. 

Segundo (2012) [26] describes a new rule PASS, 
computed faster than Sewell (1996) [27] as it has 
reduced the overhead. Due to the restriction to a subset 
of vertices, i.e., destined to reducing color domains of 
vertices, which are already known to have the least 
number of colors that are available.  

To optimize the more, Segundo [26] uses PAAS rule 
selectively to a specific set of vertices, mostly in the 
later phase of the algorithm, as the number of vertices is 
less compared to the initial phase. The incorporation of 
this rule brings to many instances gets optimized in 
terms of the chromatic number, but using any 
optimization rule to the existing algorithm, it is always a 
possibility of overhead to time complexity that leads to 
an increase in the total computation of the algorithm. So 
this rule has brought up the new upper bounds to the 
chromatic number. 
Méndez-Díaz and Zabala (2006) propose an 
improvement based on giving solutions to symmetry 
inequality constraints towards selecting a vertex for 
coloring. It includes preprocessing procedures for 
removing vertices; remove the vertices that, if color 
allocation to the current graph, would not lead to add a 
new color in the resulting graph [21]. Méndez-Díaz and 
Zabala (2008) make further improvements to his own 
algorithm by removing the symmetry that would come 
from color in   distinguish ability and defines two 
additional rules [22]. 
Xu and Jeavons (2015) used a greedy approach and 
proposed a randomized algorithm for distributed 
coloring that uses local processing at vertices and 
messages along the edges explained in two versions of 
the algorithm. The approach is regarding the processors 
exchanges message along the edge, the message is in 
the form of potential color values, and each processor 
has minimal graph knowledge [29]. 
Two versions of algorithm compute Greedy coloring, 
after different expecting steps of which takes 
Ο(∆

2
log

2
n), Ο(∆

2
logn), respectively. Where n is the 

number of vertices, and is the maximum degree of the 
graph [11, 13]. Manne and Boman (2005) described the 
greedy algorithm for sparse random graph towards the 
balance coloring. The number of available colors is 
predicted and given by a prediction formula. The 
predicted color is γ, and the prediction interval is 
decided as [1, γ]. Three greedy strategies First Fit 
algorithm, Least used algorithm, and Random algorithm 
selects the smallest color in the predicted interval based 
on the rules [19]. 
Lucet et al., (2006) proposed a technique of the exact 
method of vertex coloring that is based on the linear 
decomposition of the graph. The graph is successively 
decomposed into sub-graphs at each stage of 
decomposition, and boundary set vertices give the 
solution of resolved graph. The linear decomposition 
principle is stated [17]. The benefit gets from this 
method is its complexity depends on linear width, not on 
the size of the graph. The coloring algorithm works in 
the current step, examining only those sub-graphs that 
have no edge between two vertices of a graph 
generated in the precedent step, and coloring rules are 
applied. In the last step, the configuration set gives the 
chromatic number. 
Ouerfelli and Bouziri (2001) [25] propose the greedy 
algorithm for the dynamic graph coloring exploiting the 
same approach used by DSATUR [3, 26, 27]. It 
describes the First Fit algorithm and the three selection 
rules for ordering the sequence the vertex that is 
different from the DSATUR. Zaker (2008) defines a set 
in a graph for greedy algorithms. In most cases, the 
greedy algorithm uses more colors.  
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To eliminate the extra color used by greedy algorithms, 
some of the vertices are pre-colored before the 
algorithm starts. The pre-colored set of vertices leads to 
optimal coloring [30]. 
Lu et al., [16] proposed a parallel balanced coloring 
algorithm, which is a practical implementation of the 
equitable coloring [23]. Lu et al., try to distribute an 
equal number of vertices in every color classes. It can 
be obtained into two steps: First, by using greedy 
coloring, they get almost balanced coloring of the graph. 
In the next step, It uses a vertex-centric parallelization 
scheme or a color-centric parallelization scheme for 
getting balanced coloring. In the vertex-centric scheme, 
the vertex of different colors is parallelly moved from an 
over-full bin to the under-full bin while in color centric 
vertices of the same color move parallelly. 
Laurent et al. proposed two versions of the new self-
replicating algorithm called HEAD’ and HEAD [24]. It is 
based on the Hybrid Evolutionary algorithm (HEA) [7], 
which is proposed by Galiner and Hao. HEAD’ uses 
TabuCOl and GPX algorithm for escaping from local 
minima. It is a simple algorithm which contains two 
TabuCol algorithm which interacts each other. The 
major drawback of HEAD’ algorithm is premature 
convergence means without getting the legal coloring, it 
stops. For dealing with this premature convergence, 
Laurent et al. give HEAD in which they add two other 
candidate solution for maintaining the population 
diversity. The key idea is to replace one of the solutions 
with the solution previously obtain. 
Artacho et al., (2018) gives an efficient graph coloring 
algorithm which obtained the graph coloring with the 
help of the Douglas–Rachford algorithm. Here graph 
coloring is done by considering a different formulation, 
based on semi-definite programming. This new 
approach is demonstrated with the help of numerous 
numerical experiments [1]. 

III. PROPOSED WORK 

In the proposed approach, the greedy coloring of 
vertices that colors the vertices of a graph sequentially 
and using the color that is pre-allocated to vertices or 
adds up a new color to allocate is described. The 
sequencing of vertices is an important parameter in 
terms of minimizing the number of colors. The results in 
greedy approaches are obtained in polynomial time if 
compared with heuristics and Meta-heuristics 
approaches. The proposed method uses the Depth-first 
Search for sequencing the vertices of a graph that takes 
the input sequence of the graph and returns the vertices 
of a graph in the sequence of its traversal to the graph 
by assigning a non-zero increasing positive integer 
called as an index to every vertex. The coloring starts 
according to the sequence given by the Depth-first 
traversal and continues until all the vertices get 
processed and return the number of colors. 
The proposed Graph coloring algorithm is based on the 
Depth First Search. DFS is used to provide the order to 
the vertices of the graph in which they will be color. It 
will maintain the connectivity between the vertices which 
get colored one after another. The algorithm is 
exploiting the properties of a greedy approach is 
proposed. The primary objective of using the greedy 
approach is that the number of colors used in the 
coloring is to be minimized and secondarily the speed of 

the algorithm. Greedy algorithms for coloring compute 
the result in polynomial time. All steps of the algorithm 
are explained in the next section. 

A. Proposed Algorithm 
In the proposed algorithm coloring of vertices of the 
graph is done using a greedy algorithm, and for ordering 
the vertices, we employed DFS traversal. During the 
coloring, the connectivity of the graph is preserved. The 
algorithm works in the following steps. 

Algorithm 2: Proposed Coloring Algorithm 
Input: DIMACS graphs G(V, E). 
Output: Colored Graph with number of color χ. 

Step 1: Repeat the step 2-5 for all vertexes of graph one by 
one. 

Step 2: The DFS is applied to the graph and assigned a 
unique number to each vertex in increasing order starting 
from 1. 

Step 3: The DFS start from vertex selected in step 1 and 
continue until all the vertices in the graph are visited and 
returns a DFS sequence or index. The color set is initialized 
to zero. Two lists are maintained for each vertex. 
(i) Adjacent vertexes having an index less than the current 
vertex index. 
(ii) Adjacent vertexes having an index greater than the 
current vertex index. 

Step 4: This phase starts coloring of the graph, it starts with 
vertex having index 1, following the DFS sequence and 
continues to color all the vertexes until the graph gets 
colored. During any iteration of the algorithm, the following 
rules are followed 
(i) Vertex, which is having a greater index than its adjacent 
vertex, can only get modified its color. 
(ii) Always assign a minimum possible color from the current 
color set. If color conflicts to all adjacent vertexes, then add a 
new color to the color set. 
(iii) The color assignment is done in increasing order of their 
vertex index. 

Step 5: If at any iteration while color allocation, the algorithm 
is at the current vertex, then the color assignment is done in 
the following way. 
(i) Color Assignment to Current Vertex:. 
a. First checks the color with all the vertexes having vertex 
number less than the current vertex. 
b. If, when any vertexes color is matched with the color of 
vertex having less vertex number than current vertex, then 
assign a minimum color from the current color set. A color 
that differs from its all adjacent vertexes color. 
 c. If all the color of the color set are already assigned to 
adjacent vertex, then assign a new color to current vertex and 
add this to color set. 
(ii) Color Assignment to Adjacent Vertexes: 
a. First, it checks, the color of all vertexes one by one having 
vertex number greater than the current vertex number. 
b. If a vertex is not assigned any color till now, then assign a 
minimum color from the color set, which is different from the 
current vertex color. 
c. When the current vertex color is matched with a vertexes 
color having a larger vertex number than the current vertex, 
then change this adjacent vertex having a larger vertex 
number. 
d. Assign a minimum color from the current color set, which 
differs from the current vertex color 

Step 6: The number of colors in the color set gives the 
chromatic number of the graph. 

B. Complexity of Algorithm 
The time complexity of an algorithm exhibits its 
performance. In our proposed algorithm, the time 
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complexity is the sum of the Depth First Search 
sequencing and the Coloring algorithm. Let n be the 
number vertexes in the Graph, d be the maximum 
degree of the graph k be the chromatic number of 
Graph. 
Ordering or labeling the vertices of the graph = Ο(n). 
Coloring the vertices of graph = Ο(kdn). 
So, the total Complexity = Ο(n) + Ο(kdn) ᴝ Ο(kdn). 
The time required for the algorithm to color vertices of 
graph = Ο(kdn). 

These operations are repeated n times, so the final 
complexity of the algorithm is Ο(kdn

2
). 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 

The proposed algorithm is implemented on a machine 
having Intel (R) i7-8700 3.20 GHz processor, 8 GB 
RAM, and windows10 operating system. The C 
programming language is used to code the proposed 
algorithm. The key data structure used for storing and 
manipulation is ‘Structure’. The results are computed on 
benchmark instances of the DIMACS graph dataset [2].  

Table 1: Graph instances with matched LB to chromatic number. 

Instances n m ℵ  

BC-COL 

Algorithm [23] 

DSATUR 

Algorithm [14] 

A cutting 

plane 

Algorithm 

[15] 

new 

DSATUR 

Algorithm 

[13] 

Proposed 

Algorithm 

LB UB Time LB UB Time LB Time LB Time LB Time 

Myceil3 11 20 4           4 0.47 

Myceil4 20 71 5           5 0.48 

Myceil5 47 236 6           6 0.88 

Myceil6 
95 

755 7 5 7 7200 2 7 7200   7 tout 7 0.86 

Myceil7 191 2360 8 5 8 7200 2 8 7200   8 tout 7 1.45 

                

Fpsol2_i_1 496 11654 65 65 65 0.6 65 65 0.1 65 8 68  65 12.04 

Fpsol2_i_2 451 8691 30 30 30 1.2 30 30 0.1 30 1 30  30 10.86 

Fpsol2_i_3 425 8688 30 30 30 1.2 30 30 0.1 30 1 30  30 11.89 

                

inithx.i.1 864 18707 54 54 54 Init 54 54 Init   54 0.0 54 39.63 

inithx.i.2 645 13979 31 31 31 Init 31 31 Init   31 0.0 31 16.61 

inithx.i.3 621 13979 31 31 31 Init 31 31 Init   31 0.0 31 18.53 

mulsol.i.1 197 3925 49 49 49 Init 49 49 Init   49 0.0 49 2.69 

zeroin.i.1 211 4100 49 49 49 Init 49 49 Init   49 0.0 49 3.2 

zeroin.i.2 211 3541 30 30 30 Init 30 30 Init   30 0.0 30 1.4 

zeroin.i.3 206 3540 30 30 30 Init 30 30 Init   30 0.0 30 1.3 

                

Anna 138 493 11 11 11 Init 11 11 Init   11 0.0 11 0.34 

David 87 406 11 11 11 Init 11 11 Init   11 0.0 11 0.26 

Homer 561 1629 13 13 13 Init 13 13 Init     13 1.97 

Huck 74 301 11 11 11 Init 11 11 Init   11 0.0 11 1.03 

Jean 80 254 10 10 10 Init 10 10 Init   10 0.0 10 1.02 

                

1-insertions_4 67 232 5 5 5 2        5 0.22 

3-insertions_3 56 110 4 4 4 1 4 4 5 3 0 4 0.3 4 0.21 

4-insertions_3 79 156 4 3 4 7200 2 4 7200 3 0 4 96.9 4 0.49 

                

1-FullIns_4 93 593 5 5 5 0.1    4 0 5 0.0 5 0.41 

1-FullIns_5 282 3247 6 4 6 7200 3 6 7200 4 0 6 tout 6 1.31 

2-FullIns_3 52 201 5 5 5 0.1 5 5 1014 5 0 5 tout 5 0.53 

2-FullIns_4 212 1621 6 5 6 7200 4 6 7200 6 4 6 tout 6 0.77 

2-FullIns_5 852 12201 7 5 7 7200 4 7 7200   7 tout 7 9.38 
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Continued ……. 

3-FullIns_3 80 346 6 6 6 0.1    6 0 6 tout 6 0.68 

3-FullIns_4 405 3524 7 6 7 7200 5 7 7200 6 4 7 tout 7 2.20 

3-FullIns_5 2030 33751 8 6 8 7200 5 8 7200 6 292 8 tout 8 86.02 

4-FullIns_3 114 541 7 7 7 3    7 0 7 tout 7 0.45 

4-FullIns_4 690 6650 8 7 8 7200 6 8 7200 7 16 8 tout 8 5.56 

5-FullIns_3 154 792 8 8 8 20      8 tout 8 0.51 

5-FullIns_4 1085 11395 ? 8 9 7200 7 9 7200 8 55 9 tout 9 10.73 

mulsol.i.2 188 3885 31 31 31 Init 31 31 Init   31 0.0 31 1.83 

mulsol.i.3 184 3916 31 31 31  31 31    31 0.0 31 1.79 

mulsol.i.4 185 3946 31 31 31  31 31    31 0.0 31 1.90 

mulsol.i.5 185 3973 31 31 31  31 31    31 0.0 31 1.79 

School1 385 19095 14 14 14  14 14    14 0.1 14 20.2 

School1_nsh 352 14612 14 14 14  14 14    14 0.4 14 12 

games120 120 638 9 9 9  9 9      9 1.13 

                

miles250 128 387 8 8 8 Init 8 8 Init   8 0.0 8 1.20 

miles500 128 1170 20 20 20 Init 20 20 Init   20 0.0 20 1.83 

Miles750 128 2113 31 31 31 Init 31 31 Init   31 0.0 31 2.76 

Miles1000 128 3216 42 42 42 0.02 42 42 0.1 42 0 42 0.0 42 2.89 

Miles1500 128 5198 73 73 73 0.1 73 73 0.1 73 0 79 0.0 73 3.42 

  
 

             

Fpsol2_i_1 496 11654 65 65 65 0.6 65 65 0.1 65 8 65  65 12.04 

Fpsol2_i_2 451 8691 30 30 30 1.2 30 30 0.1 30 1 30  30 10.86 

Fpsol2_i_3 425 8688 30 30 30 1.1 30 30 0.1 30 1 30  30 11.89 

                

Mug88_1 88 146 4 4 4 11      4 324 4 0.21 

Mug88_25 88 146 4 4 4 184 4 4 4756   4 191 4 0.37 

Mug100_1 100 166 4 4 4 60      4 tout 4 0.28 

Mug100_25 100 166 4 4 4 60      4 tout 4 0.27 

The implementation of our algorithm, above mentioned, 
as specification keeping in mind and the standard 
specification that was required for successful execution 
is taken and tried for the avoidance of all possible 
hindrance and errors. The ideal platform and requisite 
language are taken into consideration. In this, we are 
experimentally demonstrating the result of our algorithm, 
and results are summarized in the table. The results 
shown here are executed 25 times on a machine 
mentioned above. The time shown in the table for 
execution is average computations. All the computations 
performed on the standard benchmark instances of the 
DIMACS graph [2]. We have assumed the computation 
time of other algorithms on standard parameters as all 
the algorithms are executed on different hardware.  
In our experiment, we test the proposed algorithm and 
compared benchmark algorithm on the widely used 
graph coloring library from DIMACS benchmark 
instances. Various classes of the graphs are present in 
this library like as random or quasi-random graphs, 
problems based on register allocation for variables in 
real codes, or class scheduling graphs, among others. 
Most of the graph coloring problem uses this DIMACS 
graph instances. In the table the first column represents 
the instances, the second column represented as ‘n’ 
shows the number of vertices in the graph instances, 
the third column represented by ‘m’ shows the number 
of edges in the graph, the fourth column represented by 

' 'ℵ  shows the known chromatic number of the graph. 

The upper bound and lower bound of chromatic number 
is represented by UB, LB, respectively. The last column 
gives the result of the proposed algorithm. The time in 
the table is considered in seconds. The ‘init’ represents 
the initial time of the respective algorithm. The 
remaining columns are the result of an existing 
algorithm with their referenced mark. The results 
summarized in Table 1 show the graph instance for 
which the LB result of the proposed algorithm in 
matched with a chromatic number of the respective 
graph and results of the rest of instances are shown in 
Table 2. 
Table 1 is a summarization of the best results that we 
have found in our proposed algorithm. The results are 
also compared to existing algorithm  [20, 21, 22, 26]. 
For 54 graphs proposed algorithm has found the 
chromatic numbers similar to current known or proved 
lower bounds. The graph from Mycielski Transformation 
family myceil3, myceil4, myceil5, and myceil6, myceil7 
found their chromatic number in time less than 1 
second. 
Chromatic number of graphs 4-insertions_3, 1-
FullIns_5, 2-FullIns_3, 2-FullIns_4, 2-FullIns_5, 3-
FullIns_4, 3-FullIns_5 and 4-FullIns_4 are evaluated 
very fast in comparison of other algorithms and for 
graph 5-FullIns_4 chromatic number similar to given by 
other algorithms is evaluated in 10 seconds. 
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Table 2: Experimental Results on Graph Instances. 

Instances n m ℵ  

BC-COL 

Algorithm [23] 

DSATUR 

Algorithm [14] 

A cutting 

plane 

Algorithm 

[15] 

new 

DSATUR 

Algorithm 

[13] 

Proposed 

Algorithm 

LB UB Time LB UB Time LB Time LB Time LB Time 

DSJC125.1 125 736 5 5 5 0.9 5 5 0.1 5 1 5 0 7 0.80 

DSJC125.5 125 3891 ? 13 20 7200 9 19 7200 12 7 19 tout 23 1.46 

DSJC125.9 125 6961 ? 42 47 7200 29 45 7200 42 354 46 tout 54 1.89 

DSJC250.1 250 3218 ? 5 9 7200 4 9 7200 5 11 9 tout 12 1.84 

DSJC250.5 250 15668 ? 13 36 7200 9 35 7200 14 3339 34 tout 40 6.80 

DSJC250.9 250 27897 ? 48 88 7200 34 87 7200 48 3605 82 tout 95 22.01 

DSJC500.1 500 12458 ? 5 15 7200 5 15 7200   14 tout 18 6.70 

DSJC500.5 500 62624 ? 13 63 7200 9 63 7200 13 538 62 tout 68 99 

DSJC500.9 500 224874 ? 59 161 7200 43 160 7200 59 5870   169 366.3 

DSJC1000.1 1000 49629 ? 6 26 7200 5 25 7200   25 tout 30 164 

DSJC1000.5 1000 249826 ? 15 116 7200 10 114 7200   110 tout   

DSJC1000.9 1000 449449 ? 65 301 7200 53 300 7200 66 4546 300 tout   

DSJR500.1 500 3555 12 12 12 Init 12 12 Init   12 0 13 2.82 

DSJR500.1c 500 121275 ? 78 88 7200 70 88 7200 80 4470 85 tout 107 367.6 

DSJR500.5 500 58862 122 119 130 Init 103 130 Init 119 1211 130 tout 140 94.58 

                

Latin_sq_10 9000 307350 ? 90 129 7200 90 129 7200       

                

le_450_5a 450 5714 5 5 9 7200 5 9 7200     12 3.84 

le_450_5b 450 5734 5 5 9 7200 5 9 7200     12 5.21 

le_450_5c 450 9803 5 5 5 7200 5 5 Init   5 0 14 5.06 

le_450_5d 450 9757 5 55 10 Init 5 8 7200   5 98.1 14 5.41 

le_450_15a 450 8168 15 15 17 7200 15 17 7200   16 tout 20 6.13 

le_450_15b 450 8169 15 15 17 7200 15 16 7200   16 tout 20 8.72 

le_450_15c 450 16680 15 15 24 7200 13 23 7200   22 tout 29 10.86 

le_450_15d 450 16750 15 15 23 7200 13 23 7200   23 tout 29 15.17 

le_450_25a 450 8260 25 25 25 Init 25 25 Init   25 0 27 6.81 

le_450_25b 450 8263 25 25 25 Init 25 25 Init   25 0 26 7.83 

le_450_25c 450 17343 25 25 28 7200 20 28 7200     34 12.69 

le_450_25d 450 17425 25 25 28 7200 21 27 7200     33 10.98 

                

queen5_5 25 160 5           5 1.62 

queen6_6 36 290 7           8 1.72 

queen7_7 39 476 7           10 0.98 

queen8_8 64 728 9 9 9 3 9 9 18   9 3.0 11 1.14 

queen8_12 96 1368 12 12 12 Init 12 12 Init   12 0.0 14 0.88 

queen9_9 81 1056 10 9 11 7200 9 10 7200   10 466 12 1.40 

queen10_10 100 2940 11 10 12 7200 10 12 7200   12 tout 14 1.50 

queen11_11 121 3960 11 11 14 7200 11 13 7200   13 tout 15 1.40 

 



Gupta & Singh        International Journal on Emerging Technologies   11(2): 854-862(2020)                        860 

Continued……. 

queen12_12 144 5192 12 12 15 7200 12 14 7200   14 tout 17 2.00 

queen13_13 169 6656 13 13 16 7200 13 15 7200   15 tout 18 2.34 

Queen14_14 196 8372
 

14 14 17 7200 14 17 7200   16 tout 20 1.89 

Queen15_15 225 10360 15 15 18 7200 15 18 7200   18 tout 21 2.12 

Queen16_16 256 12640 16 16 20 7200 13 19 7200   19 tout 22 2.14 

                

1-insertions_5 202 1227 ? 4 6 7200 2 6 7200 3 0 6 tout 6 0.48 

1-insertions_6 607 6337 ? 4 7 7200 2 7 7200 3 3 7 tout 7 2.56 

2-insertions_4 149 541 ? 4 5 7200 2 5 7200 3 0 5 tout 5 0.55 

2-insertions_5 597 3936 ? 3 6 7200 2 6 7200 3 3 6 tout 6 3.07 

3-insertions_4 281 1046 ? 3 5 7200 2 5 7200 3 0 5 tout 5 0.80 

3-insertions_5 1406 9695 ? 3 6 7200 2 6 7200 3 61   6 9.80 

4-insertions_4 475 1795 ? 3 5 7200 2 5 7200 3 2 5 tout 5 1.4 

                

wap01 2368 110871 ? 41 46 7200 39 48 7200   47 tout   

wap02 2464 111742 ? 40 45 7200 39 46 7200   46 tout   

wap03 4730 286722 ? 40 56 7200 40 55 7200       

wap04 5231 294902 ? 40 50 7200 20 48 7200       

wap05 905 43081 ? 50 51 7200 27 51 7200   50 50 50 297.1 

wap06 947 43571 ? 40 44 7200 33 45 7200   48 48 48 129.87 

wap07 1809 103368 ? 40 46 7200 23 46 7200   45 45   

wap08 1870 104176 ? 40 47 7200 23 45 7200   45 45   

                

qg_order30 900 26100 30 30 30 Init 30 30 Init   30 0.0   

qg_order40 1600 62400 40 40 42 7200 40 42 720   40 0.2   

qg_order60 3600 212400 60 60 63 7200 60 63 7200   61 tout   

                

ash331GPIA 662 4185 4 4 4 51 4 4 0.7 4 46 4 0.0 6 3.64 

ash608GPIA 1216 7844 4 4 4 692 4 4 3 4 692 4 0.1 6 8.73 

Ash958GPIA 1916 12506 ? 4 5 7200 3 5 7200 4 4236 4 0.4 7 34 

abb313GPIA 1557 46546 ? 8 10 7200 6 10 7200   10 tout   

will199GPIA 701 6772 7    7 7 1.2   7 tout 8 8.62 

All fpsol graphs have found the known chromatic 
number and the chromatic number of fpsol_i_1, 
fpsol_i_2, fpsol_i_3 are 65, 30, 30 respectively. All fpsol 
instances are taking a time approximately 12 seconds. 
Mugg graphs are solved with equal to the chromatic 
number in the minimum of time compared to other 
algorithms. It is solved within 1 second for all 
executions. The ash graph, abb graph, and will graphs 
are solved with equal to chromatic number with a 
maximum of computation time 32 seconds. School 
graphs have found the known chromatic number. 
Results of the register graphs show that chromatic 
numbers with equal to their known chromatic number. 
Results for the family of mulsol graph also equal to a 
chromatic number.Every graph is solved within 3 
seconds. All zeroin graphs are solved within 4 seconds. 
Results of Anna, david homer, huck, and jean are equal 
to a chromatic number. Games graph is equal to the 
chromatic number, and all miles graph are evaluated to 
their known chromatic number in less than 4 seconds. 
Table 2 shows the computation results on remaining 
benchmark instances of large and small graphs and it 
contains the lower bound to the chromatic number given 
by our algorithm, the time taken to compute the results 
and    the   comparison   with     the   existing   algorithm 

[17-19, 23]. In this, we have compared our resulted 
lower bounds to the chromatic number and the 
computation time overall the family of graphs. 
So starting with the random graph we have tested 15 
random graph with most of them are unknown chromatic 
numbers and the result is compared to other existing 
algorithms [20-22, 26] and it shows that for all the 
random graph the result is very bad in terms of 
chromatic number and it clear that except for 
DSJC125.1 in which result is very close to lower bound 
of chromatic number and it is equal to 5. Out of 15 
random graphs 13 are solved in efficient time with the 
highest time of 366.3. The Latin graph is unsolved in our 
case. 
When we are comparing the results of a family of 
le_450_x graph with existing algorithms, the results are 
more than the upper bound that is given in the Table 2. 
The upper bound for le450_5a counted is 12 in 3.84 
seconds. The last graph of this type of le450_25d is 
gained a chromatic number of 33. Every 15 instances 
are solved with a minimum time of 3.84 seconds and a 
maximum time of 15.17. 
For the queen graph, we have obtained the chromatic 
number more than the upper bound and with every 
instance is solved within 3 seconds. Only Queen5_5 is 
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equal to its chromatic number; remaining instances are 
higher than the upper bound. Every Queen graph is 
solved. 
For a family of fullIns graph, results are equal to the 
chromatic number. Every FullIns graph is solved; the 
computation time is efficient than other algorithms. 4-
fullIns-5 has remained unsolved. The time taken to 
compute results for these graphs is less than 10 
seconds except for 3-fullIns-5, which takes 86 seconds. 
So it has an advantage that with the equal chromatic 
numbers, these instances have given the best results in 
terms of time.  
For the results on the family of the wap graph, only two 
instances are solved others remained unsolved, and it is 
exited from the execution giving a large integer value. In 
this type of graph, the density ratio of edges with 
respect to the vertex is very high. All the qg_ order 
graph instances are unsolved to our algorithm. The 
wap05 graph is solved with equal to chromatic number 
with very efficient time compared to other algorithms 
and is equal to 297 seconds. 

IV. CONCLUSION 

This paper has presented an effective method of graph 
coloring, that is based on the greedy approach, and the 
Depth First Search decides the sequencing. In order to 
decrease the computation time, a greedy algorithm is 
employed. Coloring of the vertices in their Depth-First 
search ordering keeps the connectivity between 
vertices, which are colored in sequence. The proposed 
algorithm computes nearly all instances in very less 
time. Challenging graph instances are tested on the 
proposed algorithm, and the result shows that for most 
of the graph known chromatic number are matched. The 
comparison with the existing algorithm is conducted, 
and it shows that the objective is justified. The proposed 
algorithm has matched with the currently known 
chromatic number for 54 graph instances and minimized 
the time of other graph instances as compared to other 
algorithms. 

V. FUTURE SCOPE 

Greedy graph coloring can be applied to various real-life 
applications where the sequential algorithm is converted 
into the parallel. By the use of coloring nodes of the 
same color can directly apply parallelly. There are some 
graphs where our algorithm cannot give the results like 
Wap and q_g_order or on some graph; it did not provide 
the optimal results also algorithm can be applied to 
some vast dataset. In the future, we will try to apply this 
algorithm to find the community of the densely 
connected nodes to retrieve the useful information.   
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